
Electron-Solid Interactions

• Where do they go?
– Elastic scattering

• Single scattering
• Plural scattering
• Continuous slowing down

approximation
• Multiple scattering/diffusion

• What do they do?
– Inelastic scattering

• Energy loss mechanisms

Ludwig Reimer, “Scanning Electron Microscopy”, Springer-Verlag (1985)
Ludwig Reimer, “Transmission Electron Microscopy”,4th, Springer-Verlag (1997)



Elastic Scattering – Rutherford Cross-section
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Electrons that pass through the
area dσ are scattered through
the angle θ into a solid angle
dΩ.  dσ / dΩ is referred to as
the differential scattering cross
section.
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Rutherford Differential Scattering Cross-Section
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• Scattering proportional to Z2

• Scattering forward peaked
– Singularity at θ = 0

Consider angular momentum, resolve motion into horizontal and vertical
components.  At the start of the trajectory vh is zero, at the end vh=vsin θ:



Elastic Scattering – Other Cross-Sections

• Need to account for screening of nuclear charge by atomic
electrons
– Quantum mechanical treatment considers superposition of plane

wave and spherical scattered wave

Plane wave : ψ = ψ 0e
2πik 0z

Scattered wave : ψ = ψ 0 f θ( ) e2πik0 z

r
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•  f(θ) is the angle dependent scattering amplitude and represents
Fraunhofer (far-field) diffraction by the atomic potential

• Numerous cross-sections derived according to form of potential



Screened-Rutherford Cross-Section
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θ0 = characteristic scattering angle, typically 10’s mrad at 100 kV
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Mean-Free-Path
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P(0) = e−t / Λ = fraction unscattered

N = atoms / unit volume

n = atoms / unit area

nσ = scattering area fraction

NA = Avogadro' s number

ρ = density

z

Element Z Λ50 kV (nm) R (µm)
C 6 83 22.6
Al 13 49 16.7
Cu 29 10.7 5.1
Ag 47 7.7 4.3
Au 79 4.6 2.3
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Angular Distribution & Beam Broadening
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Continuous Slowing Down Approximation

• Energy transfer, W (<< E , incident electron energy),
occurs through Coulomb interaction between incident
electrons and atomic electrons.  Mean energy loss/path
length is -dEm.  Stopping power, S:
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Diffusion - Everhart’s Single Scattering Model

• Electron energy decreases
with depth as v = (cTρz-
v0

4)1/4

• Intensity decreases as dI(z)
= NAρσπ/(2A) I(z)dz

• Electrons are backscattered
by single scattering through
angles π - θmin < θ < π
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0.012Z −1 + 0.50.012 Z

0.012Z +1

η increases with increasing
Z, R decreases with
increasing Z.  Character of
proximity effect changes with
atomic number
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Monte-Carlo Simulation

Note changes in horizontal and
vertical scales as the atomic number
increases:  Si 14, Cu 29, Au 79

Note changes in horizontal and
vertical scales as the atomic number
increases:  Si 14, Cu 29, Au 79



Scattering in Gas Targets

N2 Ar

Ludwig Reimer, “Scanning Electron Microscopy”, Springer-Verlag (1985)



Inelastic Scattering

• Energy loss occurs through a variety of
mechanisms
– Molecular oscillations/phonons

• ∆E = 20 meV - 1 eV

– Conduction/valence electrons
• Plasmons

• Inter- or Intra-band transitions

• ∆E = 1 eV - 50 eV

– Core electrons
• Ionization of inner shell electrons

– X-rays

– Auger electrons

• ∆EK = 110 eV (Be) - 80 keV (Au)

Described by dielectric theory -
related to optical constants of
material.  Electron energy-loss
spectra and those for light and x-
rays are related

Described by dielectric theory -
related to optical constants of
material.  Electron energy-loss
spectra and those for light and x-
rays are related

Energy loss in C is ≈
0.24 eV/nm at 100 keV

Energy loss in C is ≈
0.24 eV/nm at 100 keV



Dielectric Theory

Optical constant : ε = ε1 + iε2 = n + ik( )2

Energy dissipation :
dW

dt
= E.D

Electron : ρ = eδ x − vt( )
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2( ) , Ne = electrons / unit volume, θE =
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ρ = eδ x − vt( )

20 eV loss at 100 keV
gives a θE of 0.1 mrad

20 eV loss at 100 keV
gives a θE of 0.1 mradσ inel ≈ 20 σel/Z

σ inel ≈ 20 σel/Z



Plasmon & Optical Losses
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Introduce oscillators with other characteristic
frequencies,ωb , to represent bound electrons.
Resonances occur when ω=ωb.  Passage of high-
energy electron results in frequency pulse that can
excite many resonances.

Introduce oscillators with other characteristic
frequencies,ωb , to represent bound electrons.
Resonances occur when ω=ωb.  Passage of high-
energy electron results in frequency pulse that can
excite many resonances.

Lorentz oscillators:  http://webphysics.davidson.edu/Projects/AnAntonelli/myThesis.html
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Method of Virtual Quanta

“Energy Transfer Between Electrons and Photoresist:  Its Relation to Resolution”,
Geng Han and Franco Cerrina, J. Vac. Sci. Technol. B18 p3297 (2000)



Energy Transfer

“Energy Transfer Between Electrons and Photoresist:  Its Relation to Resolution”,
Geng Han and Franco Cerrina, J. Vac. Sci. Technol. B18 p3297 (2000)



EELS Spectrum (SiN)
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